
 1

Distant, Yet Present: Remote View Architecture on
iOS & macOS
https://github.com/NSAntoine - Osama Al Hour

Introduction

As Apple’s Operating Systems continue to get more interactive and complex, the
need for a secure way of displaying content in one process from another process
has become extremely important. Remote Views on iOS and macOS provide a
flexible, secure, and performant mechanism for such a task, an implementation
trusted to the point where Apple’s willing to bet even your most sensitive data
wouldn’t be leaked by it.

In fact, you’ve definitely interacted with Remote Views before on a daily basis, when
an application on macOS presents the file picker, that’s a Remote View. When an
application presents the photo picker on iOS, that’s a Remote View. However, client
applications of Remote Views, as well as users interacting with them, don’t know
they are Remote Views, this information is entirely abstracted away by the System,
despite the fact that the View is rendered and managed by an entirely different
process.

This writeup seeks to explore the how Remote Views are implemented, their model
and archetecture, why they are so important from a security and privacy
standpoint, as well as how the System interacts with them.

https://github.com/NSAntoine

Distant, Yet Present: Remote View Architecture on iOS & macOS
Osama Al Hour

 2

Hierarchy

To understand the need and use of Remote Views, we must first understand the
hierarchy of User Interface on iOS and macOS (if you are already an iOS / macOS
developer, treat this as a refresher). Each User Interface element on both platforms,
such as text, buttons, lists, images, etc. are made up of an object called a View (on
iOS: UIView, on macOS: NSView), which is the basic building block of all user
interface elements. Usually, specific elements will subclass the UIView/NSView
base class and build on top of it, some notable examples include:

- UIButton: Provides a basic interface element of a button which performs an
action when clicked. Subclass of UIControl, a subclass of UIView that allows
views to respond to user interaction (i.e., buttons and toggles)

- UILabel: Provides a basic interface element which renders text. Subclass of
UIView

- UIImageView: Provides a basic interface element which renders an image.
Subclass of UIView

- UITableView: Provides a basic interface element which renders a simple list
of items (i.e., the list used in the system Settings app). Subclass of
UIScrollView, which is a subclass of UIView which provides scroll/zoom
capabilities

- …and many, many, many more…

Views can also add child Views, called subviews (for example, the subviews of a
View that represents a user’s social media profile would be a label for the
username, an image view of the user’s banner, etc).

Views don’t just exist by themselves, however, you can’t have an app with just
Views and nothing else. When an application is initialized, it creates a window, that
window contains what is called a View Controller. A View Controller has a singular,
central View, and any other views which the application wishes to display to the
user are to be added as subviews of that central View. This flow of a window, view
controller(s), and views is called the “View Hierarchy” of an application.

The image below demonstrates the View Hierarchy of a simple application with a
label, textfield, and button

Distant, Yet Present: Remote View Architecture on iOS & macOS
Osama Al Hour

 3

The View Hierarchy is easily accessible within the application, meaning that it’s
possible to find the instance of just about any view in memory and manipulate it in
just about any way (hiding/showing it, changing it’s size, animating it, etc.) and
capture a snapshot of the View as an image that could be saved later.

You may be wondering, how is this important for Remote Views? Why would you
supply a View Controller rendered through another process? We’ll be covering that
now with the following section.

Distant, Yet Present: Remote View Architecture on iOS & macOS
Osama Al Hour

 4

What even is a Remote View in the first place? And why?

When an application presents a View Controller which it has implemented itself or
imported from a library/framework, that View Controller is initialized in the app,
managed by the app, and rendered by the app. In other words, the View Controller
is completely controlled by the application, where it’s free to manipulate it’d like.
For the majority of User Interface, this is fine and well (i.e., it makes complete sense
for a social media app to be in complete control over the View Controller which
displays the user’s timeline).

However, there are a variety of use-cases where the system would like to provide
an application a View Controller to present to the user for a specific use-case, but
control and manipulation of that View Controller by the application (i.e., an
application editing the Views of the View Controller, or reading the data from a list
view in the View Controller) would not be acceptable.

This is where Remote Views come in: A Remote View Controller1 is a View Controller
which the user application can show and present to the user just like a normal View
Controller, however the View Controller is entirely managed and rendered by
another process, meaning that the user application has no control over the Remote
View Controller. The user application cannot read the data in the Remote View
Controller (i.e, items in a list shown in the View Controller), it cannot change the
Views in the Remote View Controller (nor can it change properties of Views in the
Remote View Controller), it cannot screenshot the Remote View Controller, nor can
it make any modifications to the Remote View Controller.

1 Though this writeup uses the term “Remote View”, user applications are almost always going to be
interacting with Remote View Controllers (always some subclass of _UIRemoteViewController) rather than
Remote Views directly. However, there is virtually no distinction for the sake of this writeup.

Distant, Yet Present: Remote View Architecture on iOS & macOS
Osama Al Hour

 5

System Use of Remote Views

As a result of how Remote View Controllers are designed (see page above), user
applications can prompt the user to select potentially sensitive information in a
Remote View Controller without that information being exposed to the application
besides information that the user has decided to explicitly share with the app.

For example, starting with iOS 14, the System provides a View Controller to
applications which allows the user to select certain photos / videos to share with a
user application without granting the application access to the entire photos library.
Both the user and the application benefit, as the user can grant the application
access to only the photos / videos they choose, and the application doesn’t have to
request permission from the user to access the photos library.

Since the picker is a Remote View Controller, the user application cannot modify the
picker arbitrarily (there’s still some customizability, to be discussed later in this
writeup, see “Communication” section), nor can it snapshot the picker to view the
photos / videos that the user can select, the only thing that the user application can
do is present the picker, send the configuration it wants (such as how many items it
wants), get access to photos / videos that the user has decided to share with the
application, and dismiss the picker.

Below is a table of notable Remote View Controllers on iOS, note that this is not an
exhuastive list.

UI Element Public View Controller Remote View Controller Renderer
Process

Photo / Video
Picker

PHPickerViewController PhotosPicker.appex
(embedded in the bundle of the
stock Photos app,
MobileSlideShow.app)

Contact Picker CNContactPickerViewController ContactsViewService.appex
(embedded in the bundle of
ContactsUI.framework)

Share Sheet UIActivityViewController com.apple.UIKit.ShareUI.appex
(embedded in the bundle of
UIKit.framework)

Apple Pay
payment sheet
(when paying for
something with
Apple Pay in an
application)

PKPaymentAuthorizationViewController PassbookSecureUIService.app
(Standalone Application, concept is
to be discussed in this writeup)

Distant, Yet Present: Remote View Architecture on iOS & macOS
Osama Al Hour

 6

Figure 1: Payment Sheet Remote View Controller dissection

Remote View Controllers are also used extensively on macOS, such as with the file explorer
panel:

Figure 2 File Panel Remote View

Distant, Yet Present: Remote View Architecture on iOS & macOS
Osama Al Hour

 7

Model & Architecture

Remote View Controllers follow a simple model where there’s 2 processes:

- The process requesting and using the Remote View Controller (called the
“Host application”)

- The process rendering and providing the Remote View Controller (called the
“View Service”)

The 2 processes communicate through XPC, Apple’s primary framework for IPC, A
View Service is implemented as one of the 3 following types of bundles:

- Application
- App Extension
- XPC Service (only macOS uses XPC Services for View Services, from what I

know)

XPC Services are just normal executables which receive requests to perform
specific actions (in the case of XPC Services acting as View Services, the requests
they receive are to provide a View which is rendered by the service). App
Extensions are plugins which extend functionality of existing apps (for example,
Widgets are implemented as app extensions), and are commonly used as View
Services (Photo / Video Picker and Contacts Picker View Services are implemented
as app extensions on iOS). The third and last way a View Service is implemented is
as a standalone application, however, View Service applications are a lot more
different than normal applications, as they’re strictly meant to be binaries that
provide View Controllers to requesting user applications, they’re not meant to be
launched through convential means, and are therefore hidden from the user (i.e.,
they don’t show up on the user’s Home Screen, or in Spotlight when searching for
apps, etc.).

When a host application requests a Remote View Controller, the View Service is
activated and provides the Remote View Controller asynchronously, the View
Service is allowed to refuse the host application the Remote View Controller it asks
for (hence why it’s called a “request”).

It is important to note that the hosting application does not directly use the
instance of the Remote View Controller from the View Service, rather, the hosting
application creates a parent View Controller (who’s actual view contents are empty
when initialized) which requests the Remote View Controller and adds the Remote
View Controller to it’s view hierarchy.

Distant, Yet Present: Remote View Architecture on iOS & macOS
Osama Al Hour

 8

The parent View Controller which requests and displays the Remote View Controller
is always implemented by a System framework / library, meaning that developers of
hosting applications never have to know about Remote View Controllers, those are
all implementation details for Apple themselves to implement.

The following diagram demonstrates how the Photos Picker View Controller, which
relies on a Remote View Controller, is instantiated:

Figure 3 Diagram demonstrating the process of requesting the Remote View Controller for the Photo Picker

Distant, Yet Present: Remote View Architecture on iOS & macOS
Osama Al Hour

 9

Communication

View Services almost always need to relay some information back to a host
application using a Remote View Controller. For example, the Remote View
Controller for the Payment Sheet needs to signal back to the host application that
the transaction either succeeded or failed, and the Remote View Controller for the
Photos Picker needs to provide the photos / videos that the user has explictily
decided to share with the host application, so how is this achieved while still
preserving the model of rendering content entirely in the View Service and
preventing the host application from arbitrarly reading / writing user-sensitive
content displayed in the Remote View Controller?

Recall earlier that View Services and Host Applications communicate through XPC,
Apple’s primary framework for IPC. In the case of View Services and Host
Applications, The Objective-C API for XPC is used rather than the traditional C API,
the traditional C API allows for 2 processes to communicate with each other by
sending and receiving a hashmap (xpc_dictionary_t objects), while the Objective-
C API for XPC works by having both processes supply “interfaces” (list of functions
that the other side can call) to the other, each process gets access to the interface
of the other process and can send a signal to the other process to perform a
function from the obtained interface. This explanation can sound a bit confusing, so
here’s a diagram to explain it:

Figure 4 Diagram explaining Objective-C XPC API Interfaces Model

In the case of Remote View Controllers, both the Host Application and the View
Service provide interfaces, the Host Application provides an interface as a delegate
to get notified of changes by the View Service, and the View Service provides an

Distant, Yet Present: Remote View Architecture on iOS & macOS
Osama Al Hour

 10

interface to allow the Host Application to make changes or configurations that the
View Service allows.

For example, for the photo picker, the View Service implements an interface where
the Host Application can signal to zoom in / zoom out the picker view, as well as
changing the configuration (i.e., are only photos allowed? How many photos /
videos should the user be allowed to pick?), and the Host Application implements
an interface where it gets notified of when the user has selected photos / videos
that it wants to share with the application.

This model allows some interaction and customizability without gaining access to
the underlying Remote View Controller and therefore guarantee that data displayed
in the Remote View Controller is still not accessible by the Host Application.

Distant, Yet Present: Remote View Architecture on iOS & macOS
Osama Al Hour

 11

But How?

So how do Remote View Controllers even do this? How can you host content that is
rendered in an entirely different process? What magic is going on here?

Recall in the Hierarchy section that we discussed that each user interface element
are made up of objects called Views. Views themselves are backed by an object
called the layer, the layer manages the majority of a View’s appearance on screen,
such as:

- Background Color
- Animation
- Geometric properties (size, position, transform)
- Shadow
- Corner Radius
- Hidden / Visible status
- …and more properties…

Normal (non-remote) Views use the standard CALayer class on both macOS and
iOS, which contains the properties listed above. Hosting Applications displaying
Remote Views use a subclass of the CALayer class, called CAHostLayer. A host
layer displays content rendered from another process. In the case of Remote Views,
A host layer is used by the hosting application to display content which is rendered
in the View Service. The way this works is that the View Service issues a 64-bit
integer identifying the layer it’s rendering, this identifier is called the Context ID.

The View Service sends the Context ID to the Hosting Application, and the Hosting
Application initializes a CAHostLayer then sets the host layer’s contextId property
to the one sent by the View Service.

When a CAHostLayer registers a contextId once it receives one from the rendering
process (in our case, when the hosting application receives the context ID from the
View Service), a bridge is formed between the hosting application and the View
Service, then the View Service starts sending objects to the hosting application
called IOSurface objects, which are framebuffer objects (data in memory which
represents pixels in a video frame), the hosting application’s CAHostLayer then
uses those IOSurface objects to display content rendered by the View Service.

IOSurface objects are actually created and managed by the kernel, not the View
Service itself (the View Service just requests the kernel to create one). Since the
IOSurface object is created and managed by the kernel, it means sending the

Distant, Yet Present: Remote View Architecture on iOS & macOS
Osama Al Hour

 12

IOSurface object is almost guaranteed to be secure since the kernel prevents
unauthorized access to memory between different processes.

In order to prevent fake touches by applications (i.e., a malicious application may
present the Photo Picker View Controller then simulate a fake touch on the software
side to fool the system into thinking the user explicitly selected a photo / video to
share with the application), synthetic touch events created by the host application
are contained to View Controllers of the host application itself so they never reach
the Remote View Controller of the View Service, and real touch events are re-
routed by the System (specifically, a System process called backboardd) so that
touch events made to the Remote View Controller never reach the host application
in the first place and instead reach the View Service.

Distant, Yet Present: Remote View Architecture on iOS & macOS
Osama Al Hour

 13

Thanks to & Resources

- JxBrowser: Cross-Process Rendering using CALayer
https://teamdev.com/jxbrowser/blog/cross-process-rendering-using-calayer/

- Chromium Source Code: (Demonstrates usage of CALayerHost)
https://github.com/chromium/chromium

- Class dumps of _UIRemoteView, _UIRemoteViewController, and CALayerHost:
https://headers.dfiore.xyz

- RemoteViewFun: Research - Making a custom _UIRemoteViewController
https://github.com/pixelomer/RemoteViewFun

- Ole Begemann: Remote View Controllers in iOS 6
https://oleb.net/blog/2012/10/remote-view-controllers-in-ios-6/

https://teamdev.com/jxbrowser/blog/cross-process-rendering-using-calayer/
https://github.com/chromium/chromium
https://headers.dfiore.xyz/
https://github.com/pixelomer/RemoteViewFun
https://oleb.net/blog/2012/10/remote-view-controllers-in-ios-6/

