
A Worm’s Look Inside: Apple’s Sandboxing security
measures on macOS & iOS

Osama Alhour - https://github.com/NSAntoine

August 17, 2024

ABSTRACT
This paper explores the security model, internal implementation, and interface of Apple’s
notorious Sandbox system on iOS and macOS, meant to protect users and their devices from
harm by bad actors through a seemingly simple yet intricate-in-practice system of isolating apps
and restricting their capabilities in order to prevent as much damage as possible from being
done, a practice known as “Mandatory Access Control” [1] which has been adopted by other
vendors such as “SELinux” [2], while Apple’s own implementation is derived from an existing
one by the name of “TrustedBSD” [3]. This paper will also delve into how the Sandbox system
works together with other system components.

1. INTRODUCTION
Apple’s core implementation of the Sandbox resides within a Kernel Extension (colloquially
known as a “kext”, modules which add onto the functionality of the kernel, similar to Kernel
modules on Linux) by the name of Sandbox.kext, meaning it runs from Kernel-land, an
extremely important implementation detail as it to be separated from userland where the
checks and balances that are to be enforced by Sandbox.kext could just be hooked and disabled.
The simple idea of the Sandbox is to restrict the ability of an application from reading, writing,
and interacting with other applications and their files on the device at all to prevent bad actors
from exploiting attack vectors which could easily allow them to steal user data, maliciously
tamper with user files, etc. if applications were just allowed to roam around the filesystem and
read / write anywhere. Apple implements a system where every application is given its own
folder that only the application is allowed to read and write to, known as a “container”1, as well
as imposing other restrictions such as filtering system calls. The location of an application’s
container as well as when it’s created depends on platform. On macOS, a sandboxed
application’s container is created at ~/Library/Containers/{ApplicationID}, i.e., the container for
Microsoft Word’s would be in ~/Library/Containers/com.microsoft.Word, and the container
would be created upon the application opening, if it doesn’t already exist.

On iOS, the container situation is a little more complicated. Static application data such as the
Application Bundle (where resources like assets bundled with the app, the actual application
binary, and libraries / frameworks used in the application, stuff that is guaranteed to never
change until the application is updated) is placed in

1 Containers are isolated to only the app that owns them, however, App Groups exist where mul8ple apps can
access a container, as long as those apps are signed by the same Team ID, a unique iden8fier assigned to each
development team

https://github.com/NSAntoine

/var/containers/Bundle/Application/{ApplicationUUID} [4], whereas the container that the
application can read and manipulate in any way it wants is placed in
/var/mobile/Containers/Data/{ApplicationUUID}. The following image below, from Apple’s
documentation archive, demonstrates this separation of containers:

Unlike macOS, containers on iOS are created when the application is installed rather than when
opened [5]. After creating the container, the system makes sure to adjust the application’s
environment properly in accordance with the container (i.e., HOME and TMPDIR environment
variables are adjusted to point to folders within the container).

The actual container directory is made up of 2 parts:

- A Property List (a format which stores structured data much like JSON, colloquially
known as a “plist”) file, which contains metadata describing the application & container.
This Property List is created, managed and manipulated by containermanagerd, a
daemon whose actual implementation resides in a private system framework by the
name of ContainerManagerCommon.framework. The table below displays values that
are documented by this Property List, and later retrieved by the system:

Key Value
MCMMetadataIdentifier Text describing the application’s identifier
MCMMetadataInfo A dictionary of general metadata information

mostly pertaining to the Sandbox such as the
Sandbox profile (SandboxProfileData) and

other general information
(SandboxProfileDataValidationInfo)

SandboxProfileData Base64 Encoded Data of the application’s
Sandbox Profile, a concept to be explained
later in this paper

SandboxProfileDataValidationInfo A Dictionary containing information that will
be used by the system (more specifically,
libsandbox, more on this later in the paper)
as inputs to compile the sandbox profile of
the application (see above)

- The second part of the container directory is a folder called Data, where the application

stores its data. The Data folder is structured in the same way that the user’s home
directory is (Documents, Library, Music, Desktop, Downloads, …). This is where the
application will store its data.

The daemon mentioned above, containermanagerd, is extremely important when talking about
sandboxing, as it communicates with both userland clients over one of Apple’s IPC frameworks,
named XPC, and with the kernel over a special Mach port (communication endpoints which
could be used between both kernel and userland). The daemon acts somewhat as a bridge
between the userland processes which install, restore, and delete apps, and between the kernel
where Sandbox resides and needs information about an app’s container (i.e., directory of the
container), though its role is more than just a bridge, as its name describes, it also manages the
actual containers and stores appropriate metadata in them.

Now that we have described the extremely basic layout of how Sandbox sets up its
containerization, we will delve into who exactly gets sandboxed in the first place.

2. WHO GETS SANDBOXED?
The rule of thumb as to who is to be sandboxed differs by platform, and we will be looking at
how it’s done on macOS first. Before delving into exactly how the system determines that an
application should be sandboxed or not, we will need to understand the concept of
“Entitlements”. Entitlements on Apple platforms simply describe the “capabilities” of an
application (that the system should grant to that application, i.e., “this application needs print
capabilities”), however, only applications signed by Apple can grant themselves any
entitlements they need, while applications signed by anyone else can only use entitlements
allowed by Apple.

In practice, entitlements are a Property List embedded into the binary of an application / tool
which contains a dictionary of Key-Value pairs corresponding to each capability that the
application should (or shouldn’t) have, here’s a simple example from a macOS system binary,
TextEdit, the basic text editing app that comes pre-installed, much like Windows’ Notepad
(Dumped using the printents tool):

https://github.com/NSAntoine/printents

❯ printents /System/Applications/TextEdit.app
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN"
"http://www.apple.com/DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>com.apple.application-identifier</key>
 <string>com.apple.TextEdit</string>
 <key>com.apple.developer.ubiquity-container-identifiers</key>
 <array>
 <string>com.apple.TextEdit</string>
 </array>
 <key>com.apple.private.hid.client.event-dispatch.internal</key>
 <true/>
 <key>com.apple.security.app-sandbox</key>
 <true/>
 <key>com.apple.security.files.user-selected.executable</key>
 <true/>
 <key>com.apple.security.files.user-selected.read-write</key>
 <true/>
 <key>com.apple.security.print</key>
 <true/>
</dict>
</plist>

What’s relevant to us is one particular key, com.apple.security.app-sandbox, set to true,
meaning that TextEdit voluntary requests the system to sandbox it (this is actually a bit
unorthodox of entitlements, as they usually specify capabilities that the system should grant,
rather than restrict, like the App Sandbox).

Upon the startup of any process on macOS / iOS, the dynamic linker (which loads all processes,
known as “dyld”) will load a system library by the name of libSystem.b, which initializes a couple
of necessary System libraries, the important one in the case of sandboxing being
libsystem_secinit. libsystem_secinit checks for if the process should be sandboxed (by checking
for if the com.apple.security.app-sandbox entitlement is present and set to true on macOS,
or if the com.apple.private.security.no-sandbox is present and set to false on iOS).

While the sandbox is voluntary for apps on macOS, where the developer can simply remove the
com.apple.security.app-sandbox entitlement while packaging the app (except for apps
distributed on the macOS App Store, which need to be sandboxed [6]), on iOS, however, the
situation is different. Whether or not an application is sandboxed on iOS depends on where it
was installed [7]. All iOS App Store applications (including system ones that can be deleted and
re-installed, such as Maps), get installed to the location where they are sandboxed by default
(/var/containers), thus App Store apps can’t be un-sandboxed (unless an app possess and sets
the com.apple.private.security.no-sandbox entitlement to false, however this is only
limited to Apple’s apps, meaning that 3rd party apps are always subjected to the Sandboxed on
iOS with no exceptions). Certain system applications, such as Settings, are located outside of
that directory (and are instead located in /Applications), and as such, the sandbox doesn’t apply
to those applications.

3. BEHIND-THE-SCENES WORKINGS
Before diving into how the Sandbox system is implemented, it’s crucial to first dive in and
understand how MACF (Mandatory Access Control Framework) works on iOS / macOS as well as
how it communicates with its clients (one of which being Sandbox, however there are others as
well). As mentioned in the start of this paper, Apple’s MAC implementation is based off of
TrustedBSD, introduced to macOS 10.5 [8]. The gist of how this MAC Framework works is that
clients (in the case of Apple OSes, the clients are usually kernel extensions, i.e., Sandbox)
register what is called a “policy”. A policy contains callback functions (called “hooks”) for events
(called “operations”) that the policy is interested in, hooks return either 0 to allow the operation
to occur, or a non-zero value (almost always an errno code) in order to prevent the operation
from occurring (i.e., a hook that would want to deny an operation to occur due to issues
regarding permission would return EPERM). When the kernel executes an action that MAC
policies could be interested in (i.e., allowing a userland process to write to a file), it iterates over
all MAC policies that are interested in the event and checks for the return value of each policy’s
hook, all policies interested in an operation, with no exceptions, must allow the operation to
occur, otherwise the kernel will prevent it from occurring. A policy signals to the kernel that it is
interested in permitting or denying a certain type of operation simply by providing a hook for
that operation.

Part of what makes MAC Policies incredibly powerful is just how many operations they are able
to allow / disallow, as of the time of writing this (August 2024), there are 331 operations! With
39 being reserved. These operations include (but are not limited to)2 control over:

- Filesystem related activities (Opening / Deleting / Moving files and directories,
mounting, controlling whether a process can access a particular file / directory, etc.)

- Networking activities
- Accessing device drivers with IOKit (the framework which Apple provides as an interface

to interact with hardware devices)
- Software HID (Human Interface Design) Control (i.e., being able to perform synthetic

touches and keypresses)
- setuid, setgid, and other similar functions that processes can use to change their

privileges
- A process’ ability to debug another process or fork itself
- A process’ ability to set Code Signing information

The flow of setting up a MAC policy is simple; a Kernel extension simply needs to create a
structure consisting of information about the policy by the name of mac_policy_conf, clients
must provide a display name (called mpc_fullname), a shorter name (called mpc_name), and a
structure consisting of the hooks to operations that the client is interested in
(mac_policy_ops), clients can also specify preferences for how the policy should be loaded
(i.e., should this policy be loaded and initialized early in the boot process? Is it okay if the

2 This list is, in no way shape or form, exhaus8ve. The full list can be found in the mac_policy.h file in the source
code of the Darwin Kernel used on iOS / macOS, and the list is subject to change.

https://github.com/apple-oss-distributions/xnu/blob/94d3b452840153a99b38a3a9659680b2a006908e/security/mac_policy.h#L5764

system unloads this policy?). After creating their policy configuration structure, clients simply
need to call mac_policy_register and pass in the policy configuration as well as a pointer to a
number which could later be used to de-activate the policy with mac_policy_unregister.

In a policy’s hooks, information is provided about the process attempting the operation (process
id, name, path, etc.) by the kernel, as well as credentials in the form of a structure to be
discussed later (kauth_cred_t). Here is a simple demonstration of a policy, which prevents
processes except ones named “OurSpecialProcess” from writing to a file if that file is named
“PROTECTED_FILE”:

#define PROTECTED_FILENAME "PROTECTED_FILE"
#define ALLOWED_PROCESS_TO_ACCESS "OurSpecialProcess"

/*
 this is a demo of MACF Policies,
 where we monitor for write events where the filename is PROTECTED_FILENAME,
 and if it is PROTECTED_FILENAME, then allow the write operation to occur only if the
process name is ALLOWED_PROCESS_TO_ACCESS
 */
static int policy_should_allow_write(kauth_cred_t active_cred, kauth_cred_t file_cred,
struct vnode *vp, struct label *label) {
 const char *vnodeName = vnode_getname(vp); /* get reference to name of file */

 /* check if it's our protected filename */
 if (vnodeName && strcmp(vnodeName, PROTECTED_FILENAME) == 0) {
 char procName[MAXCOMLEN];
 proc_selfname(procName, MAXCOMLEN); /* get name of process trying to write to
file */

 /* check if the process accessing PROTECTED_FILENAME is
ALLOWED_PROCESS_TO_ACCESS
 and if it isn't, return EPERM to signal that the process isn't allowed to
write to the file */
 if (strcmp(procName, ALLOWED_PROCESS_TO_ACCESS) != 0) {
 vnode_putname(vnodeName); /* release filename reference */
 return EPERM; /* deny operation to occur by returning EPERM */
 }
 }

 vnode_putname(vnodeName); /* release filename reference */
 return 0; /* return 0 to signal that we allow the operation to occur */
}

/* register that we want to monitor for and allow/deny write events */
static struct mac_policy_ops our_operations = {
 .mpo_vnode_check_write = policy_should_allow_write
};

static struct mac_policy_conf our_policy_configuration = {
 .mpc_fullname = "MACF Policy Demo",
 .mpc_name = "com.demo.macfpolicy",

 .mpc_ops = &our_operations
};

mac_policy_handle_t handle; /* handle to keep track of our MAC policy */

/* called when our kernel extension is started */
kern_return_t demo_kext_start(kmod_info_t *ki, void *data) {
 mac_policy_register(&our_policy_configuration, &handle, data);
 return KERN_SUCCESS;
}

/* called when our kernel extension is to be de-registered */
kern_return_t demo_kext_stop(kmod_info_t *ki, void *data) {
 mac_policy_unregister(handle);
 return KERN_SUCCESS;
}

Kexts which provide policies also usually rely on userland daemons to do additional work and
return status codes that signal whether or not it is appropriate to let the event proceed, in
Sandbox’s case, a userland daemon by the name of sandboxd exists on macOS (though not on
iOS), mostly for the purposes of tracing [4], and it’s role is very minor in comparison to other
userland daemons with their kexts. The closest thing which Sandbox.kext has to a userland
helper daemon which helps in an influential way is containermanagerd, as it is the daemon
which deletes, creates, and manages containers as well as provide information about them to
the kernel when requested.

The primary client of MAC policies is Sandbox (Sandbox also actually polices stuff in other ways
than just MAC policies, Sandbox’s operations don’t necessarily refer to operations provided by
MACF), which provides hooks for 159 operations (as of macOS 14.6.1). Just about every hook
provided by Sandbox follows a similar flow of calling into one function, cred_sb_evaluate,
which takes in 3 arguments: the first is always provided by MACF, and is a struct pointing to the
credentials of the process attempting the operation (kauth_cred_t, who’s anatomy is displayed
below), the second argument is a number identifying the operation type (Operations policed by
Sandbox), and the third is a buffer containing any additional information to pass to the function.
cred_sb_evaluate calls onto label_get_sandbox to get a pointer to a struct where
information about the process’ sandbox is stored, the struct resides in slot 1 of the process’
kauth_cred_t labels.

cred_sb_evaluate then calls onto another function with a pointer to the process’ Sandbox
structure, operation number, buffer, and a callback to sb_evaluate_internal.

sb_evaluate_internal then performs it’s checks and balances with some help of the callback
function passed into it, arguably being the star of the show, the eval function, a long, complex
function which is around 1800 lines when decompiled. sb_evaluate_internal parses and
checks some information, then calls and returns the return value of the callback eval function.
All in all, the flow of a MACF hook from Sandbox is demonstrated below

The most important of these hooks is the hook for cred_label_update_execve, the largest
hook by far coming in at 724 lines when decompiled. This hook is called when a process is
spawned and is meant to signal to MAC clients to set the credentials of the process being
spawned, in Sandbox’s case, this is where it containerizes and sandboxes the spawned process,
as well as where it creates the sandbox struct for the process to later store it in slot 1 of its
cr_label [4]. It first starts by parsing specific entitlements from the process (a task delegated
to one of Sandbox’s friends, AppleMobileFileIntegrity) in order to determine the profile to use
specified by the seatbelt-profiles entitlement if present (however this behaviour is exclusive to

iOS, as macOS instead uses Sandbox Profile Language files) and the ID of the application, then
calls platform_set_container to set the container, creates the sandbox struct for this process,
then creates what is called a Sandbox extension (to be explained furthermore in this paper) in
order for the app to access it’s own executable and container, calls label_set_sandbox to
assign slot 1 of the process’ cr_label slots to the sandbox struct in order to keep track of it in
other hooks.

4. PROFILES
Due to the needs of Apple’s sandboxed own apps (i.e., a sandboxed system app may need to
communicate with a system daemon, which would be prohibited by the Sandbox under usual
circumstances) and to provide flexibility, the Sandbox of an application can be configured with
configuration files called profiles. A profile is made up of a set of rules where every rule consists
of 3 core components: a decision to allow or deny an operation, the operation(s) to allow or
deny, and optionally context to conditionally allow or deny the operation. Every Sandbox profile
has a simple default allow/deny rule for operations which the profile doesn’t cover. Here’s an
example of a profile:

;; Comments are declared like this
;; Begin example.sb
(import "system.sb")
(version 1)
(deny default)

(allow file-read* file-write* (home-subpath "/Documents/SecretDirectory"))
(allow process-exec (container-subpath "/helpertools"))
(deny device-microphone)
(deny device-camery)
;; End example.sb

The example Sandbox Profile above first has statements about the profile itself (importing
another Sandbox profile, specifying the version, and the default statement), after that, we
define our rules, first, we allow all file read and write operations to
~/Documents/SecretDirectory (We don’t know the actual home directory since this is just a
configuration file, but we can use a macro provided by Sandbox, home-subpath), we allow the
application to spawn binaries if they are under a folder named “helpertools” in the application’s
container, as well as unconditionally denying access to the device’s camera and microphone.

In fact, the implementation of one of the most notorius security features of macOS, System
Integrity Protection (collaquily known as “SIP” and “rootless”), designed to prevent malicious
actors from modifying essential system files and directories (/System, /bin, /var, pre-installed
system applications, etc) [9] is partially just a Sandbox profile called “platform_profile” [10]
which resides in /System/Library/Sandbox/rootless.conf.

Sandbox profiles allow to specify arguments in a number of ways, including:

- String Literals (i.e., allow file-write* (literal "/SomeFile")), which will allow for
all type of file writes for the path “/SomeFile”

- Variable Arguments (i.e., allow file-write* (home-subpath “/SomeFile”)), which
will allow for all type of file writes for the path ~/SomeFile under the home directory

- Regex Arguments (i.e., allow file-write* (regex \.(doc|docx)) which will allow
for all type of file writes for the files with the extension “doc” and “docx”

Sandbox operations are divided into categories, for example, the file-write operations category
consists of the following items:

- file-write-acl to permit or deny setting Access Control Lists
- file-write-create to permit or deny creating a specific file / directory
- file-write-data to permit or deny writing data to a specific file / directory
- file-write-setugid to permit or deny changing the owner uid or gid of a specific file /

directory
- file-write-unlink to permit or deny deleting a specific file / directory
- …and some others not listed here for the sake of brevity.
-

Rules could either specify a specific operation from the category (i.e., if you’d like to allow /
disallow just writing data, you could specify file-write-data in the rule), or could specify the
category followed by * as an umbrella for all operations in the category (i.e., if you’d like to
allow / disallow all forms of write operations, you could specify file-write*).

As previously mentioned, the operations which Sandbox polices aren’t necessarily limited to the
operations which MACF polices, in fact, Sandbox polices several more types of operations:

Non-MACF reliant
Operation name
(in Sandbox.kext)

What it polices

appleevent-send Whether a process is allowed to send an Apple Event (a message-based
form of IPC [11]) to other processes on macOS

lsopen Whether a process is allowed to open another application directly using
Apple’s framework for managing applications, LaunchServices

nvram Whether a process is allowed to set, get, and delete objects stored in the
device’s NVRAM (where the device stores persistent storage needed in
updates, restores, and other use cases)

user-preference Whether a process is allowed to get and set objects in a Preferences
domain (a database used by applications to store user preferences)
belonging to another application, for example, an application wanting to
read the preferences of iMessage for whatever reason would add the
following rule:

(allow user-preference-read (preference-domain
"com.apple.Messages"))

On macOS, Sandbox profiles are stored as plaintext files with the “sb” file extension on
/System/Library/Sandbox/Profiles and are written in the human-readable format of the profile
above, called the Sandbox Profile Language format, modeled after the Scheme language. On
iOS, however, Sandbox profiles are stored in a binary format in the __TEXT.__const segment of
Sandbox.kext’s binary, making them difficult to accurately dump and read, otherwise profiles
work.

5. SANDBOX EXTENSIONS
Sandbox extensions are tokens (represented as a String) which a process can issue from the
kernel representing an action (i.e. reading / writing to a specific path) that the process can then
“consume” to perform that action, the process must be able to already perform the action that
it is issuing a Sandbox extension for (i.e., if the process wants a Sandbox extension to read and
write to /SomeFile, the process must already be able to read and write /SomeFile). On the
surface, Sandbox extensions seem useless, why would a process need a token for an action it
can already perform? However, they are incredibly powerful for their intended use case, where
a privileged (often times completely un-sandboxed) process issues a Sandbox extension to a
non-privileged, sandboxed process, which grants the sandboxed process the ability to perform
that action which they otherwise wouldn’t have been able to.

The most apparent use case for this is the file selector panel on macOS, when an application
opens the file selector panel, the panel itself is rendered and handled in a completely separate
process, meaning that the process which requested the panel can’t read the files displayed on
the panel (and therefore the sandbox still stays intact), when the user selects a file and presses
“OK” to dismiss the panel, the file panel process (which is unsandboxed, and can therefore read
whatever file chosen) issues an extension to the sandboxed process to allow it to read and write
to the file selected, this is how, for example, Microsoft Word can read and write to documents
that you open in ~/Downloads or in ~/Documents despite those files being outside of Word’s
container.

Another use case of Sandbox extensions is a process which spawns un-sandboxed and wishes to
later sandbox itself, however needs access to specific files / directories. In this case, the process
can issue Sandbox extensions for those paths, “consume” the extensions, and later sandbox
itself by calling sandbox_init.

Sandbox extensions are issued by calling two types of functions:
sandbox_extension_issue_(extension-type) and sandbox_extension_issue_(extension-
type)_to_process. The sole difference is that the former issues the extension for the current
process, while the latter issues the extension for another process by passing in that process’
audit token (an audit token is a more secure way of identifying processes on Apple platforms,
since process IDs are inheritly racy and vulnerable to re-use by another process).

When a process requests a Sandbox extension, the system passes in the type (as a number) and
a string identifier called the “extension class” which narrows down the specific ability the client

wants to issue (i.e., the extension class for files specifies if they want just read-only or read /
write capabilities), Sandbox extension types include:

ID Sandbox extension Type Purpose
0 file read / write access to a specified file, read only access can be

issued by passing in com.apple.app-sandbox.read as the extension
class, and both read / write access can be granted by passing in
com.apple.app-sandbox.read-write as the extension class

1 mach Access to specified Mach ports / XPC services
2 iokit_user_client_class Access to specified IOKit User Client class
3 generic Unknown (although it’s name indicates that it could be an

umbrella for other operations policed by Sandbox?)
4 posix “Access to named POSIX IPC object (UN*X sockets, etc)” [4]
5 preference (Supposedly) Read / write access to a specific preference domain

(see NSUserDefaults), however couldn’t get this to work in
practice

6 sysctl (Supposedly) Read / write access to a specific sysctl values,
however couldn’t get this to work in practice

Sandbox extensions are not automatically in effect once they are issued, but rather, they must
be activated (the term Sandbox uses for this is “consume”) by calling the
sandbox_extension_consume function and passing in the token String that was issued by the
kernel, the consume function returns a 64-bit integer as a handle identifying the extension,
which the process can then use to relinquish the effect of the Sandbox extension by calling
sandbox_extension_release and passing in the handle.

It is important to note, however, that while a process can issue a Sandbox extension for another
process, the target process has to be the one that activates it, this is usually done by the
sending the the extension string to the target process over IPC, where the target process will
then activate the extension itself, such as in the case of the file panel on macOS, which sends a
sandbox extension string to the client application when a file / directory is chosen, and the
application itself activates the extension (however this is handled automatically by the AppKit
framework in the case of the file selector panel, which means developers don’t usually have to
worry about these details).

The code below demonstrates an example of a process issuing a Sandbox extension for another
process, activating the extension by consuming it, running a callback function to signal to the
target process to perform tasks to the path requested, then after the callback function is done,
the Sandbox extension is released in order to relinquish it’s effects.
bool grant_sandbox_extension_to_path_for_process(const char *path,
 audit_token_t target_process_audit_token,
 void (^callbackWhileExtensionIsInEffect)(void))
{

char *extToken = sandbox_extension_issue_file_to_process("com.apple.app-sandbox.read-write",
path, 0 /* additional flags, anything other than 0 returns “invalid” */,
target_process_audit_token);

 if (extToken == NULL || strcmp(extToken, "invalid") == 0) {
 // we couldn't get a valid Sandbox extension, return false
 return false;
 }

 int64_t extensionHandle = sandbox_extension_consume(extToken);
 if (extensionHandle == -1) {
 // sandbox_extension_consume returns -1 when an error occurs,
 // and sets the errno value to indicate why the error occured
 printf("grant_sandbox_extension_to_path_for_process: failed to consume extension, reason:
%s\n", strerror(errno));
 return false;
 }

 // now that the extension is in effect,
 // let's call our callback function that signals to the process
 // to execute code while the extension is in effect
 callbackWhileExtensionIsInEffect();

 // Release the extension
 sandbox_extension_release(extensionHandle);

 return true;
}

The first part of the Sandbox extension string (up until the first semicolon) is a hash of 2 things:
the rest of the string as well as an 128-bit secret which the device generates at boot (meaning
that Sandbox extensions cannot be stored and re-used after reboot), and the second half of the
string is a description of the Sandbox extension itself, including the type of extension, the
extension class, information identifying the target process, and additional data (i.e., for file
Sandbox extensions, the additional data would be the path to the file to get read or read / write
abilities to). [12]

The image below demonstrates the segments and anatomy of a Sandbox extension string:

The sandbox_extension_issue_(extension-type), sandbox_extension_consume, and
sandbox_extension_release functions all follow a very similar flow of communicating to the
Sandbox kext from userland, a concept which will be discussed in the following section.

4071d8d89d2762066cff32387d31a7ab442bbde9c3e433d4ffe3ba834f18050d;00;00030000;0000daf0;0002419c;0000000000000020;com.apple.app-sandbox.read-write;00;01000013;0000000000000002;02;/hello

audit_token_t targetProcessToken = ... /* audit token of target process */
sandbox_extension_issue_file_to_process(APP_SANDBOX_READ_WRITE, "/hello", 0, targetProcessToken)

Hash made up of 2 things:

- 128-bit secret generated at boot
time (and changes every boot) by
Sandbox.kext

- Rest of the Sandbox extension
string

Number identifying
the Sandbox extension
type (00 for file
Sandbox extensions)

Segment identifying
the process this
extension was
issued to

Length of
extension class
string in
hexadecimal

Extension class
string

Unknown what this
segment is for, but it
appears only on file
Sandbox extensions

Additional data to be passed for
the Sandbox extension, this
depends on the type of the
extension:

- for file Sandbox extensions,
this is the path to the file to
grant read / write permissions to

- for mach Sandbox extensions,
this is the name of the Mach
service / XPC service to permit
the process to lookup

- for IOKit Registry Entry
Sandbox extensions, this is the
name of the registry entry class
to allow the process to accessImage made by Osama Alhour (https://github.com/NSAntoine) ,

"A Worm’s Look Inside: Apple’s Sandboxing security measures on macOS &
iOS"

6. USERLAND INTERACTION WITH SANDBOX.KEXT
There are various APIs (though most are private) which allow for some sort of interaction
between the userland process and Sandbox.kext, these APIs are implemented in a system
library known as libsandbox. These include, but are not limited to:

- sandbox_init / sandbox_init_with_parameters to initialize the sandbox of a
process

- sandbox_extension_issue_(extension-type) and
sandbox_extension_issue_(extension-type)_to_process family functions to issue
Sandbox extensions

- sandbox_extension_consume to activate an issued Sandbox extension
- sandbox_extension_release to relinquish an activated Sandbox extension
- sandbox_inspect_pid to dump information Sandbox information about a specific

process (though it seems this function has been removed in newer versions of iOS /
macOS)

The question, then, is how do these functions, from userland processes, communicate with
Sandbox.kext, a Kernel extension? MAC policies can provide an interface for userland processes
to interact with them, on the policy’s side, this simply involves registering for the
mpo_policy_syscall operation in the policy’s configuration, where clients are provided with a
number identifying the action that the userland process is requesting the MAC policy client (in
this case, Sandbox.kext) to perform, as well as a pointer to additional data provided by the
userland process. As the operation’s name implies, this works similarly to how actual kernel
syscalls work. On the userland process’ side, the process calls a function by the name of
__mac_syscall, and passes in 3 arguments:

- The name of the MAC policy to send the syscall to (in Sandbox’s case, this is always just
going to be “Sandbox”)

- The syscall number (policy-specific)
- A pointer to additional data that the MAC policy may need (policy-specific)

When called, __mac_syscall performs an actual syscall to the kernel itself, the kernel then
iterates over all registered MAC policies to find one where the policy’s name (as the policy
defined in the mpc_name field of it’s mac_policy_conf) matches the name passed in by the
userland process, then calls the policy’s mpo_policy_syscall function, passing in the syscall
number and the pointer to the additional data provided, as well as a struct pointing to the
process requesting the syscall (if the policy names matches but it does not implement
mpo_policy_syscall, or no policy with the specified name was found, errno 103 (ENOPOLICY)
is returned).

In the case of the libsandbox functions listed above, they call into a __sandbox_ms function,
which in implementation is the exact same as __mac_syscall:
// actual implementation
int __sandbox_ms(const char *policyName, int syscall_number, void *arg) {
 return __mac_syscall(policyName, syscall_number, arg);
}

A simple function to demonstrate this is sandbox_extension_consume, the function which
requests Sandbox.kext to activate a specified Sandbox extension and returns a handle
identifying the activated extension as a 64-bit integer. Decompiling the function (and cleaning
up the output) results in this:
int64_t sandbox_extension_consume(const char *ext) {
 int64_t handle;

 int64_t args[] = {
 (int64_t)ext, /* memory address of extension token string */

 (strlen(ext) + 1), /* size of the extension token string + 1 to
include NULL terminator character */

 (int64_t)&handle /* memory address of the handle for Sandbox.kext to
write to */
 };

 int ret = __sandbox_ms("Sandbox", 6 /* syscall number for
sandbox_extension_consume */, args);
 if (ret == 0) {
 return handle; // syscall succeeded, return handle
 } else {
 return -1; // didn't succeed, return -1 :(
 }
}

In this example, the function creates an array of arguments to pass into the Sandbox syscall,
consisting of the memory address of Sandbox extension string, the size of the extension string
(required in order for Sandbox.kext to copy the string to kernel memory from user-space
memory to read it), and the memory address where we want the handle number to be written
to. When the kernel receives a __mac_syscall syscall for Sandbox, it’ll iterate over all
registered policies, find Sandbox’s policy, and call it’s mpo_policy_syscall function,
Sandbox.kext will then call the appropriate function for the syscall number provided (in the case
of sandbox_extension_consume, whose syscall number 6, the function is
syscall_extension_consume).

7. CONCLUSION
In this paper, we’ve explored the interface and model of Apple’s notoriously robust sandboxing
system on iOS and macOS, as well as internal implementations from the side of the kernel,
userland, and Sandbox.kext itself, how Sandbox.kext interacts with the rest of the system, and
how Apple configures the Sandbox differently based on an application’s needs with profiles.

Works Cited

[1] National Institute of Standards and Technology, mandatory access control (MAC) - Glossary:
CSRC. https://csrc.nist.gov/glossary/term/mandatory_access_control

[2] Red Hat, Inc 4.2. SELinux and Mandatory Access Control (MAC).
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/7/html/virtualization_se
curity_guide/sect-virtualization_security_guide-svirt-mac#sect-Virtualization_Security_Guide-
sVirt-MAC

[3] FreeBSD, TrustedBSD – Home http://www.trustedbsd.org

[4] J. Levin, Hack in the (sand)Box https://newosxbook.com/files/HITSB.pdf

[5] Apple, Inc, File System Basics.
https://developer.apple.com/library/archive/documentation/FileManagement/Conceptual/FileS
ystemProgrammingGuide/FileSystemOverview/FileSystemOverview.html

[6] Apple, Inc, App Sandbox | Apple Developer Documentation.
https://developer.apple.com/documentation/security/app_sandbox/#

[7] J. Levin, The Apple Sandbox: Deeper Into The Quagmire - Jonathan Levin (Video presentation
at Hack In The Box Security Conference).
https://youtu.be/mG715HcDgO8?si=fFAbfbWshpqKqg5W&t=1092

[8] A. Stavonin, Working with TrustedBSD in Mac OS X | System Development.
https://sysdev.me/trusted-bsd-in-osx/

[9] Apple, Inc, About System Integrity Protection on your Mac - Apple Support.
https://support.apple.com/en-us/102149

[10] HackTricks, macOS Sandbox | HackTricks. https://book.hacktricks.xyz/macos-
hardening/macos-security-and-privilege-escalation/macos-security-protections/macos-sandbox

[11] SwiftAutomation, Understanding Apple events. https://hhas.bitbucket.io/understanding-
apple-events.html

[12] opa334, Sandbox Extensions explained.
https://github.com/opa334/sandbox_extension_generator?tab=readme-ov-file#sandbox-
extensions-explained

https://csrc.nist.gov/glossary/term/mandatory_access_control
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/7/html/virtualization_security_guide/sect-virtualization_security_guide-svirt-mac#sect-Virtualization_Security_Guide-sVirt-MAC
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/7/html/virtualization_security_guide/sect-virtualization_security_guide-svirt-mac#sect-Virtualization_Security_Guide-sVirt-MAC
https://docs.redhat.com/en/documentation/red_hat_enterprise_linux/7/html/virtualization_security_guide/sect-virtualization_security_guide-svirt-mac#sect-Virtualization_Security_Guide-sVirt-MAC
http://www.trustedbsd.org/
https://newosxbook.com/files/HITSB.pdf
https://developer.apple.com/library/archive/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/FileSystemOverview/FileSystemOverview.html
https://developer.apple.com/library/archive/documentation/FileManagement/Conceptual/FileSystemProgrammingGuide/FileSystemOverview/FileSystemOverview.html
https://developer.apple.com/documentation/security/app_sandbox/
https://youtu.be/mG715HcDgO8?si=fFAbfbWshpqKqg5W&t=1092
https://sysdev.me/trusted-bsd-in-osx/
https://support.apple.com/en-us/102149
https://book.hacktricks.xyz/macos-hardening/macos-security-and-privilege-escalation/macos-security-protections/macos-sandbox
https://book.hacktricks.xyz/macos-hardening/macos-security-and-privilege-escalation/macos-security-protections/macos-sandbox
https://hhas.bitbucket.io/understanding-apple-events.html
https://hhas.bitbucket.io/understanding-apple-events.html
https://github.com/opa334/sandbox_extension_generator?tab=readme-ov-file#sandbox-extensions-explained
https://github.com/opa334/sandbox_extension_generator?tab=readme-ov-file#sandbox-extensions-explained

