
Firstline Privacy Defense: an insight into Apple’s

Transparency, Consent, Control framework

Osama Alhour (https://github.com/NSAntoine)
Computer Science, German Jordanian University

October 18, 2024

Contents

1 Introduction 2

2 User Interaction 2

3 TCC Who? 4

4 Services 5

5 Architecture 6

6 tccd & The databases 7

7 What about the alert? 10

8 User Authorization for thee, but not for me 12

9 ...But who does the checking? 15

1

https://github.com/NSAntoine

1 Introduction

In an era where tension and anxiety about user privacy and security are higher
than they’ve ever been, where attacks are getting more sophisticated and there’s
more on the line in terms of user data than there has ever been before, tech
companies are spending billions upon billions of dollars to secure and protect
critical user data. Perhaps the most notable of which is Apple, going so far
to protect user data as creating entirely new hardware such as the Secure En-
clave Processor (on the iPhone 5s and later models), a physical co-processor in
charge of important security concerns such as biometrics. It is no coincidence
that Apple has positioned itself as a a leader in protecting user data and privacy
with how many mitigations and privacy centered features they maintain (and
continuously add year after year), one of the most important of which is Apple’s
Transparency, Consent, Control framework (commonly known and referred to as
”TCC”) framework, which regulates what and how apps interact with sensitive
user data & device hardware by requiring applications to seek user permission
to access desired data or services, whether the data is stored on-device (Photos,
Contacts) or access to device hardware features (Camera, Microphone).

TCC addresses the extremely important concern of keeping critical user data
safe by letting users control not just which apps access certain sensitive infor-
mation & hardware features, but also how applications access the data they’re
being granted (i.e., users can pick which specific photos an application can ac-
cess, rather than granting access to all photos), preventing applications from
accessing data which the user wants to keep private from said application.

This paper seeks to provide a comprehensive technical analysis of how TCC
works internally, how it interacts with other system components, and it’s impact
on both how developers shape their applications as well as user control granting
sensitive data to applications.

2 User Interaction

One of, if not, the most important aspect of TCC is user control. The ability
to control if an application has access to specific data, and, in the cases of
some data, being able to control what data is accessible. To the user, it accom-
plishes this in a simple manner: a plain alert. In fact, when you get those alerts
asking you ”Application X would like to access your contacts/microphone/pho-
tos/etc...”, that’s TCC. To ensure this is secure, however, the alert isn’t rendered
by the actual application requesting those permissions, the application’s role is
just to request those permissions and get notified for if the user granted them or
not. The alert is managed, presented, and drawn by separate processes on both
iOS and macOS, ensuring that the process requesting the permissions cannot
programmatically get ahold of the alert and simulate touch events or directly
call functions that indicate the user pressed the ”Allow” button.

2

In recent years, as Apple has been cracking down harder and harder on misuse
of user data and privacy. TCC alerts have gotten a bit more sophisticated,
where some now allow for the users to pick specific data that the application
should be allowed to access. For example, starting in iOS 14, users can pick a
specific subset of photos and videos to share with the applications requesting
access to the Photos library[1].

When requesting access to a specific set of data / hardware features policed by
TCC (Photos, Camera, Contacts, etc...), applications must specify and justify
to the user why they want access to that data, applications store the text jus-
tifying why they want access to the data in a file called the Info.plist, which
stores various other basic information about the application itself (i.e., bundle
identifier, name of the application, application version, etc.). This justification
text is later retrieved by the System and shown in the alert requesting permis-
sion. If an application tries to request data that it hasn’t provided a description
for (i.e., an application requests access to the user’s Photos without providing a
reason why in it’s Info.plist file), the System terminates the application, and
the application is guaranteed to be rejected from the App Store upon review.
The justification text being in a static file also allows App Store review to ensure
that a different text isn’t shown at runtime when the alert is presented, since
applications are not allowed to modify their Info.plist files.

3

Figure 1: Example of an application’s Info.plist which includes descriptions for
requesting user sensitive data, later parsed and displayed by TCC

3 TCC Who?

When an application on iOS / macOS needs access to user sensitive data or
hardware features guarded by TCC, it is always provided by a System frame-
work (a library). For example, Photos from the user’s gallery are provided by
the PhotosKit framework, access to the Camera is provided by the AVFoun-
dation framework, and access to user contacts are provided by the Contacts
framework. This means that the developer never has to interface with TCC
themselves or know about it, in fact, the vast majority of iOS & macOS devel-
opers don’t know about TCC, or what it does, or how it works, etc. This is
information that is intentionally abstracted away from both the developer and
the user. Apple writes frameworks which interact with TCC in order to allow
developers to check and request authorization to data guarded by TCC (as TCC
is considered private API, subject to be internally changed at any time, meaning
it is not stable to have it’s interface publically exposed to app developers).

4

4 Services

Data / Hardware features protected by TCC are called TCC ”Services”, they’re
identified as string constants prefixed with kTCCService..., below is a table
of commonly used & accessed TCC Services (Note that this doesn’t include all
TCC Services, just commonly used ones):

Common TCC Services

Service name Data / Hardware features gated
by TCC

kTCCServicePhotos Access to user’s Photo Library

kTCCServiceCamera Access to user’s Camera

kTCCServiceMicrophone Access to user’s Microphone

kTCCServiceAddressBook Access to user’s Contacts

kTCCServiceLiverpool Access to user’s Location (used
on iOS only)

kTCCServiceFaceID Access to FaceID related capabil-
ities

kTCCServiceScreenCapture Access to Screen Capture capa-
bilities

kTCCServicePostEvent Access to capabilities related
to synthetically posting HID
events (i.e, synthetic key / touch
presses)

Apple’s use of TCC is so extensive that there are exactly 100 TCC Services
defined as of macOS 15.0.

5

5 Architecture

TCC is made up of 3 important parts within the System:
- TCC.framework: A private System framework which allows for interaction
with TCC, including request permissions and checking for an application has
been granted authorization to TCC Services
- tccd: Star of the show, daemon which manages permissions, authorization
requests, the TCC database, and all actions to do with TCC.
- The TCC database(s)*: To be discussed further.

The TCC framework is used by other System frameworks (mostly public ones,
such as PhotoKit and Contacts) to check authorization status as well as request
authorization from the user, for example, the Contacts framework provided to
user applications uses this framework in order to provide applications with in-
formation pertaining to if the user has granted Contacts permissions, as well
as methods to request permissions from the user to access their Contacts, this
pattern is observed with almost every single framework which provides access
to TCC Services to applications.

The framework doesn’t actually do any of the heavy lifting in relation to TCC,
rather, it acts as a frontend to allow applications to interact with the TCC
daemon, tccd, which does perform all the heavy lifting. The next section covers
tccd, what it does, how it works, and it’s importance.

6

6 tccd & The databases

The star of the show in terms of TCC is tccd (the TCC daemon), tccd acts
as a server which receives requests by applications to perform actions related
to TCC, such as requesting authorization when an application requests it, and
carries those actions out. on every System, there’s 2 tccd processes are running:

- A ”system” tccd instance (macOS only!).
- A tccd instance for the current desktop user running.

on iOS, watchOS, and tvOS, the notion of a ”desktop user” doesn’t exist, on
those platforms there’s just the ”mobile” user, therefore, on those platforms
there is just one tccd process running. This is in contrast to macOS, where
there’s a ”system” tccd process which runs as root as well as a tccd process for
the current desktop user. The reason for the existence of a separate ”system”
tccd instance on macOS is to be discussed later in this section.

The role of tccd is quite simple, it acts as the security middleman between
applications which request access to services and between the system which
provides those services, the daemon provides services for applications to check
if they have permissions for a certain service and to request authorization for
that service

Clients communicate with tccd over Apple’s primary framework for IPC called
XPC, where tccd listens for connection requests by clients made to tccd’s ser-
vice name com.apple.tccd (for the user mode tccd instance) and com.apple.tccd.system
for the system instance.

Once clients have established a connection with the daemon, they send what is
called a ”message” to tccd containing a dictionary (hashmap) of keys and values
for the daemon that it uses as context to perform actions for. All messages sent
to tccd must include a key named function specifying what the client wants
tccd to do. For example, when an application needs to request permissions
for a specific TCC Service, it specifies the function key as TCCAccessRequest,
and populates other keys, such as the key specifying which service it needs to
request access to.

So how does tccd itself work anyway? How does it check for if an applica-
tion already has permission for a specific service so applications don’t need to
prompt the user for permission to services every single time the application is
used? How does it prompt the user in a secure manner? The answer to the
first question is the TCC Database(s): iOS/watchOS/tvOS devices have just
one database, while macOS has multiple: each desktop user has their own TCC
database in order to ensure that permissions aren’t shared between different
users for the same applications, as well as TCC database used for the system
tccd, which is the same no matter the user. On macOS, the user TCC database

7

is always used except for the following services:

Service permissions stored in the System-wide TCC Database

Service name Data / Hardware fea-
tures gated by TCC

kTCCServiceDeveloperTool Access to Xcode Devel-
oper Tools

kTCCServiceSystemPolicyAllFiles Full Disk Access

kTCCServiceAccessibility Access to Accessibility
features

kTCCServiceScreenCapture Access to Screen Cap-
ture capabilities

kTCCServiceListenEvent Access to listen to HID
events such as touches
and keystrokes

kTCCServicePostEvent Access to capabilities
related to synthetically
posting HID events (i.e,
synthetic keypresses)

Since these are recorded in the System-wide TCC database on macOS, it means
the permissions for these services are shared across desktop accounts on the
same computer, for example, if one user (say, user A) granted Screen Capture
capabilities to Application foo, then Application foo would have Screen Capture
capabilities on another desktop user on the same computer (say, user B).

TCC Databases are SQLite3 databases which have multiple tables, but just one
is of interest to us: the access table, the access table holds records of applica-
tions which have been given or denied access to TCC Services as well as which
services those applications have been granted access to, and each row contains
the following set of keys & data (note that this isn’t a list of all keys, but rather
just the most important):

8

access Table Fields

Key Type Purpose

service Text The service which this application has been granted or de-
nied

client Text String identifying the application (could be either bundle
ID or absolute path[3])

client type Number A number identifying the type of the client field (0 for if
it’s a bundle identifier, 1 for if it’s the absolute path)[3].

auth value Number A number identifying whether the service has been ap-
proved for this application or not. Possible values are: de-
nied (0), unknown (1), allowed (2), or limited (3). [3]

auth reason Number A number identifying the reason why auth value is set to
it’s current value (i.e., a auth reason of 3 indicates that
auth value is set to it’s current value because of the user’s
choice). The full list of possible auth reason values can be
found on Keith Johnson’s A deep dive into macOS TCC.db
blog post

cs req BLOB
(raw
data)

Data which is translated into a Code Signing Requirement
Blob, a String which describes criteria that the application
needs to meet in terms of Code Signing (i.e, who is this
application signed by?) to be granted access to this ser-
vice. This is in order to avoid attacks where an application
that doesn’t have access to a particular service uses the
same bundle ID as an application which does have access
to the service (as those 2 applications with the same bundle
identifier would have a different Code Signature)

But why is tccd even a thing? Well, normal applications do not have permission
to read, touch, or even know the existence of TCC Database(s) on purpose,
that’s what tccd is for: since allowing applications to directly modify the TCC
Database(s) would be risky, tccd (a privileged binary which is able to modify
the TCC Database(s)) modifies the TCC Database(s) after performing checks
and validations (such as requiring the user to approve granting the application
permissions to a certain service before it modifies the database accordingly),
meaning that applications cannot arbitrarily modify the databases to grant
themselves permissions.

9

https://www.rainforestqa.com/blog/macos-tcc-db-deep-dive#auth-reason-values

7 What about the alert?

Recognizable to just about anyone who’s used an iPhone is the alert which pops
up whenever an application requests access to a TCC Service (even if the person
doesn’t know what TCC is):

Figure 2: Example of an alert requesting access to a TCC Service

While presenting an alert is like the ideal solution to obtain user permission,
there comes a somewhat difficult issue to solve with this method: alerts prompted
by an application are owned by that application, meaning that they’d be able
to control those alerts in any way possible, including, in this case, sending fake
presses to the ”Allow” button to fool the system into thinking the user willingly
granted access to the application for the requested service.

In order to circumvent this issue, TCC (specifically, tccd) communicates with
the System to have the System present the alert, meaning that the alert is within
control of the System, not the the requesting application, the implementation
details are mostly the same on all processes with one slight difference.

on iOS: tccd establishes a connection with SpringBoard, the subsystem on iOS
which manages the Home Screen, Lock Screen, App Switcher, Control Center,
and much much more. tccd does this by using CFUserNotification, a C API
(though not exposed in the iPhone SDK) for non-UI programs (such as tccd)
to display alerts.

10

on macOS: tccd establishes a connection the application responsible for Notifi-
cation Center UI [2] (not SpringBoard, as it doesn’t exist on macOS).

Once tccd establishes the connection with the process that’ll display the alert,
it sends a couple of properties to the process, such as:

- Title of the alert (Application X would like to access Service)
- Body text of the alert (usually this is the application’s usage description for
the service, discussed earlier in this paper)
- Buttons for user choice: for services where the user can specify which data
they’d like the application to access (such as Photos in iOS 14+), there’ll be 3
buttons (Allow access to all, Allow access to specified data, Don’t allow), for all
other services, there’ll be just 2 choices, allow/don’t allow

Once tccd receives a response back from the process displaying the alert as
to whether the user granted or denied the application access to the requested
service, it updates the appropriate TCC Database, and lets the requesting ap-
plication know whether they were granted or denied access.

Figure 3: Diagram demonstrating the flow when an application requests access
to a TCC Service.

11

8 User Authorization for thee, but not for me

Discussed in Chapters 2 and 7 of this paper, an extremely important part of
TCC, and what you could argue is the entire point of it, is gatekeeping services
behind user permissions, where the user has to explicitly authorize the applica-
tion to use that service when prompted by an alert for it.

Despite this, though, some apps have the luxury of being able to use TCC ser-
vices without prompting the user! Not you, though.

What’s going on here? Well, the applications which can access TCC Services
without user permissions are limited only to Apple’s own applications, not any
third-party applications installed from the App Store, and that’s only if Ap-
ple chooses for those apps not to have to ask the user for permission to those
services, some Apple apps still request permissions for certain services (i.e., the
Maps application still requests permission for the Location TCC Service), while
others don’t (i.e., iMessages doesn’t need to request permission for the Micro-
phone TCC Service).

So how come? Apple has an intricate system called Entitlements where appli-
cations can specify extra capabilities that the system should provide to that
application, sounds awesome, right? The catch is that Entitlements are limited
based on which ones Apple allows you to possess, which is strictly enforced by
the System, as having Entitlements which Apple didn’t grant you is guaranteed
to get your app rejected from the App Store, and even if you sideload the ap-
plication, the System will refuse to launch it.

Since the applications in this context (ones which can access TCC Services
without having to ask the user) are Apple’s own applications, Apple can simply
grant any Entitlements to their own applications, which is what they do in this
case.

We can use built-in tools in macOS to check for the Entitlements of any appli-
cation, let’s check it for iMessages:

12

1 > codesign --display --entitlements - /System/Applications/Messages

.app >> iMessageRawEntitlements.plist # Dump the Entitlements

of iMessages using the codesign tool

2 > /usr/libexec/PlistBuddy -c print -x iMessageRawEntitlements.plist

Print it in readable XML format

3 <?xml version="1.0" encoding="UTF -8"?>

4 <!DOCTYPE plist PUBLIC " -//Apple //DTD PLIST 1.0//EN" "http://www.

apple.com/DTDs/PropertyList -1.0. dtd">

5 <plist version="1.0">

6 <dict>

7 ...

8 <!-- Lots of Entitlements that we dont care about here ... -->

9 <key>com.apple.private.tcc.allow</key> <!-- Oh! -->

10 <array>

11 <string >kTCCServiceAddressBook </string >

12 <string >kTCCServicePhotosAdd </string >

13 <string >kTCCServicePhotos </string >

14 <string >kTCCServiceMediaLibrary </string >

15 <string >kTCCServiceMicrophone </string >

16 <string >kTCCServiceCamera </string >

17 </array >

18 <!-- Also lots of Entitlements that we dont care about ... -->

19 ...

20 </dict>

21 </plist>

com.apple.private.tcc.allow? Yep, it turns out that when an application
requests access to a certain service, tccd will check it’s Entitlements to see if
that application has the com.apple.private.tcc.allow entitlement, an array
of TCC Service names that the app should be granted access to that service
without prompting the user, no questions asked. This is how Messages has ac-
cess to a user’s Contacts, Photos, Microphone, and Camera, without requesting
access to any of these services from the user.

We can confirm this by reversing tccd and reading it’s disassembled code:

13

1 /* get string of requested service */

2 service = objc_msgSend(v5, "service");

3

4 /* use helper class to check if requesting application has com.

apple.private.tcc.allow array in entitlements

5 and if it includes the requested service

6 */

7 v74 = (unsigned int)objc_msgSend(

8 helperClassInstance ,

9 "hasEntitlement:containsService:options:"

,

10 CFSTR("com.apple.private.tcc.allow"),

11 service ,

12 1LL);

13 if (v74) {

14 os_log(

15 OS_LOG_TYPE_DEFAULT ,

16 "Granting %{ public}@ access to %{ public}@ via entitlement

’com.apple.private.tcc.allow’",

17 application_name ,

18 service);

19 /* rest of code is to grant access to the application for the

requested service */

20 }

14

9 ...But who does the checking?

So far we’ve discussed how/where TCC keeps records, how it prompts the user
for permission securely, etc etc. But TCC is just the subsystem which keeps
tracks of permissions, something else has to be providing the data or hardware
features which are gated by TCC, so how do they all connect to each other?

The simple answer is... daemons! The classic model is that there 3 players
involved when an application accesses a TCC Service:
- The user application
- tccd
- A daemon providing the data

For example, user applications use the Contacts framework, which connects to
the contactsd daemon, a privileged binary which has access to the Contacts
database. contactsd uses TCC in order to check whether or not the user
application requesting contacts has authorization for Contacts before providing
the application with a list of contacts. Most other daemons that provide TCC
Services follow a similar pattern.

Figure 4: Demonstration of a data-providing daemon using TCC.framework to
check if the client application has appropriate permissions

15

References

[1] Apple, Inc (2021) Delivering an Enhanced Privacy Experience in Your
Photos App https://developer.apple.com/documentation/photokit/

delivering_an_enhanced_privacy_experience_in_your_photos_app

[2] Jonathan Levin (2016) MacOS and iOS Internals, Volume III: Security &
Insecurity https://newosxbook.com/home.html

[3] Keith Johnson (2021) A deep dive into macOS TCC.db https://www.

rainforestqa.com/blog/macos-tcc-db-deep-dive

16

https://developer.apple.com/documentation/photokit/delivering_an_enhanced_privacy_experience_in_your_photos_app
https://developer.apple.com/documentation/photokit/delivering_an_enhanced_privacy_experience_in_your_photos_app
https://newosxbook.com/home.html
https://www.rainforestqa.com/blog/macos-tcc-db-deep-dive
https://www.rainforestqa.com/blog/macos-tcc-db-deep-dive

	Introduction
	User Interaction
	TCC Who?
	Services
	Architecture
	tccd & The databases
	What about the alert?
	User Authorization for thee, but not for me
	...But who does the checking?

